Exercise 25

In Example 6 we considered a bacteria population that doubles every hour. Suppose that another population of bacteria triples every hour and starts with 400 bacteria. Find an expression for the number n of bacteria after t hours and use it to estimate the rate of growth of the bacteria population after 2.5 hours.

Solution

Let the population be $n(t)$. Since it starts at 400 and triples every hour,

$$
\begin{aligned}
n(0) & =400 \\
n(1) & =3 n(0)=3(400) \\
n(2) & =3 n(1)=3[3(400)]=3^{2}(400) \\
n(3) & =3 n(2)=3\{3[3(400)]\}=3^{3}(400) \\
& \vdots \\
n(t) & =3^{t}(400) .
\end{aligned}
$$

Take the derivative to obtain the rate of growth per hour.

$$
\begin{aligned}
\frac{d n}{d t} & =\frac{d}{d t}\left[3^{t}(400)\right] \\
& =400 \frac{d}{d t}\left(3^{t}\right) \\
& =400 \frac{d}{d t}\left(e^{\ln 3^{t}}\right) \\
& =400 \frac{d}{d t}\left(e^{t \ln 3}\right) \\
& =400\left(e^{t \ln 3}\right) \cdot \frac{d}{d t}(t \ln 3) \\
& =400\left(e^{\ln 3^{t}}\right) \cdot(\ln 3) \\
& =400(\ln 3) 3^{t}
\end{aligned}
$$

Therefore, after 2.5 hours, the rate of growth is

$$
\frac{d n}{d t}(2.5)=400(\ln 3) 3^{2.5} \approx 6850 \frac{\text { bacteria }}{\text { hour }} .
$$

