Exercise 25

In Example 6 we considered a bacteria population that doubles every hour. Suppose that another population of bacteria triples every hour and starts with 400 bacteria. Find an expression for the number n of bacteria after t hours and use it to estimate the rate of growth of the bacteria population after 2.5 hours.

Solution

Let the population be n(t). Since it starts at 400 and triples every hour,

$$n(0) = 400$$

$$n(1) = 3n(0) = 3(400)$$

$$n(2) = 3n(1) = 3[3(400)] = 3^{2}(400)$$

$$n(3) = 3n(2) = 3\{3[3(400)]\} = 3^{3}(400)$$

$$\vdots$$

$$n(t) = 3^{t}(400).$$

Take the derivative to obtain the rate of growth per hour.

$$\frac{dn}{dt} = \frac{d}{dt} [3^t (400)]$$
$$= 400 \frac{d}{dt} (3^t)$$
$$= 400 \frac{d}{dt} (e^{\ln 3^t})$$
$$= 400 \frac{d}{dt} (e^{t \ln 3})$$
$$= 400 (e^{t \ln 3}) \cdot \frac{d}{dt} (t \ln 3)$$
$$= 400 (e^{\ln 3^t}) \cdot (\ln 3)$$
$$= 400 (\ln 3) 3^t$$

Therefore, after 2.5 hours, the rate of growth is

$$\frac{dn}{dt}(2.5) = 400(\ln 3)3^{2.5} \approx 6850 \frac{\text{bacteria}}{\text{hour}}.$$